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Analytic Approximations for the Velocity of
Field-Driven Ising Interfaces
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We present analytic approximations for the field, temperature, and orientation
dependences of the interface velocity in a two-dimensional kinetic Ising model
in a nonzero field. The model, which has nonconserved order parameter, is
useful for ferromagnets, ferroelectrics, and other systems undergoing order�
disorder phase transformations driven by a bulk free-energy difference. The
solid-on-solid (SOS) approximation for the microscopic surface structure is used
to estimate mean spin-class populations, from which the mean interface velocity
can be obtained for any specific single-spin-flip dynamic. This linear-response
approximation remains accurate for higher temperatures than the single-step
and polynuclear growth models, while it reduces to these in the appropriate
low-temperature limits. The equilibrium SOS approximation is generalized by
mean-field arguments to obtain field-dependent spin-class populations for
moving interfaces, and thereby a nonlinear-response approximation for the
velocity. The analytic results for the interface velocity and the spin-class popula-
tions are compared with Monte Carlo simulations. Excellent agreement is found
in a wide range of field, temperature, and interface orientation.
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1. INTRODUCTION

The appearance of the world around us through sight and touch is largely
determined by interfaces between phases with different optical and
mechanical properties, and the materials properties of multiphase media
are strongly influenced by the geometry of interfaces that separate their
constituent materials.(1, 2) Since, in general, the morphology of an interface
is determined by the growth process by which it is formed, the large-scale
structures of growing interfaces have inspired an enormous amount of
work in the last few decades.(3, 4)

In comparison to the vigorous interest in large-scale structure, much
less attention has been paid to interfacial structure on a microscopic scale.
This is somewhat surprising since the microscopic structure limits the inter-
facial propagation velocity under an external driving force, such as the
applied field for a magnetic or dielectric domain wall or the supersatura-
tion or supercooling for a crystal surface. It is also important for properties
such as chemical reactivity and catalytic activity.

In this paper we consider how the microscopic interface structure
determines the growth velocity of a simple model surface in a system with
nonconserved order parameter: the interface between domains of positive
and negative magnetization in a square-lattice kinetic Ising ferromagnet
with nearest-neighbor interactions, which is driven by a field favoring one
of the two spin orientations.(5, 6, 7) This model is applicable to the kinetics
of phase transformation in many magnetic and ferroelectric systems and
other order-disorder transitions whose kinetics are not inhibited by
coupling to a conserved field. It belongs to the dynamic universality class
of the Kardar�Parisi�Zhang (KPZ) model, (8) and the velocity of a macro-
scopically plane interface is expected to be linear in an asymptotically weak
field, as is also predicted by the Lifshitz�Allen�Cahn theory, (9, 10) However,
neither theory gives the explicit field dependence, which should contain
both the average interface orientation and the specific dynamic. Here we
derive analytic, approximate expressions for the mean velocity as a func-
tion of field, temperature, and interface orientation. Our approach is based
on the concept of spin classes used in rejection-free Monte Carlo (MC)
algorithms, (11, 12, 13) together with the Burton�Cabrera�Frank solid-on-
solid (SOS) approximation for the structure of a stationary interface.(14, 15)

While the theory should become exact for asymptotically small tem-
peratures and fields, our main purpose is to explore its applicability outside
this limited regime.

The remainder of this paper is organized as follows. In Section 2 we
introduce the kinetic Ising model and the concept of spin classes. In Sec-
tion 3 we summarize relevant aspects of the SOS approximation for the
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structure of a flat, equilibrium Ising interface between two bulk phases of
opposite magnetization, which we use to obtain analytic approximations
for the mean spin-class populations in zero field. These provide a linear-
response approximation for the velocity of a driven interface. In Section 4
we develop an extension of the SOS approximation to obtain field-depend-
ent spin-class populations for flat, moving interfaces as well. This leads to
a nonlinear-response approximation for the velocity. In Section 5 the
theoretical results for the interface velocity and spin-class populations from
Sections 3 and 4 are compared with MC simulations. The nonlinear-
response approximation gives remarkable agreement with the simulations
in a wide range of field, temperature, and interface orientation. Section 6
contains a discussion, conclusions, and some suggestions for future work.

2. MODEL AND DYNAMICS

The anisotropic square-lattice Ising ferromagnet with nearest-neighbor
interactions is defined by the Hamiltonian

H=& :
x, y

sx, y(Jxsx+1, y+Jy sx, y+1+H ) (1)

Here sx, y=\1, �x, y runs over all lattice sites, and H is the applied field.
The lattice constant is taken as our unit of length. An interface is intro-
duced by fixing sx, y=+1 and &1 for large negative and positive y, respec-
tively. For concreteness we assume that H�0, such that the interface
moves in the positive y direction under an applied field. The implementa-
tion of these boundary conditions in our MC simulations is discussed in
Section 5.1.

Approach to equilibrium is ensured by a single-spin-flip (nonconser-
vative) dynamic which satisfies detailed balance, such as the Metropolis or
Glauber algorithms.(16) Any such algorithm is defined by a transition prob-
ability, W[sx, y � &sx, y]=W[;2E], where ; is the inverse of the tem-
perature T (we use units in which Boltzmann's constant is unity), and 2E
is the energy change that would occur if the proposed spin flip were accep-
ted. Since there are only a finite number of different values of 2E, the spins
can be divided into classes, (6, 11) labeled by the spin value s and the number
of broken bonds between the spin and its nearest neighbors in the x- and
y-direction, j and k, respectively. The spin classes, denoted jks with
j, k # [0, 1, 2], are listed in Table 1 together with the corresponding
energies, E( jks), and energy changes, 2E( jks). For the anisotropic model
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Table 1. Spin Classes in the Anisotropic Square-Lattice Ising Modela

Class, jks E( jks)&E0 2E( jks)

01s V \H+2Jy �2H+4Jx

11s V \H+2(Jx+Jy) �2H
21s V \H+2(2Jx+Jy) �2H&4Jx

10s - \H+2Jx �2H+4Jy

20s - \H+4Jx �2H&4(Jx&Jy)
12s � \H+2(Jx+2Jy) �2H&4Jy

02s � \H+4Jy �2H+4(Jx&Jy)
22s \H+4(Jx+Jy) �2H&4(Jx+Jy)
00s \H �2H+4(Jx+Jy)

a The first column gives the class labels, jks. The second column gives the total field and inter-
action energy for a spin in each class, E( jks), relative to the energy of the state with all spins
parallel and H=0, E0=&2(Jx+Jy). The third column gives the change in the total system
energy that would result from reversing a spin in a particular class from s to &s, 2E( jks).
In both E( jks)&E0 and 2E( jks), the upper sign corresponds to s=&1, and the lower sign
corresponds to s=+1. The first three classes (marked V) have nonzero populations in the
SOS approximation, and flipping a spin in any of them preserves the SOS interface con-
figuration. The next two classes (marked -) also have nonzero populations in the SOS
approximation, but flipping a spin in any of them may produce an overhang or a bubble.
The two classes marked � have zero populations in the SOS approximation, but flipping a
spin in any of them may lead to a configuration compatible with the SOS constraint. Class
22s represents a single spin which is antiparallel to all its neighbors; flipping such a spin
yields a bulk spin in class 00&s. Although only the classes marked V and - have nonzero
populations in the SOS approximation, the MC transition probabilities of all classes except
00s are given by Eq. (2). The bulk spins, 00s, have zero transition probabilities in the
dynamic used here.

defined by Eq. (1) there are 18 classes.(12) In the isotropic case, Jx=Jy , this
reduces to 10 classes distinguished by s and the total number of broken
bonds, j+k.(11)

For concreteness and comparison with numerical simulations we here
choose the discrete-time Glauber dynamic, defined by the transition prob-
ability

WG[sx, y � &sx, y]=
e&;2E

1+e&;2E (2)

The Glauber dynamic is mathematically convenient in that the transition
probability is a continuously differentiable function of 2E. In its con-
tinuum-time version it has also been shown to correspond to a quantum-
mechanical S=1�2 system weakly coupled to a large thermal fermion
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bath.(17) However, the spin-class populations can be used to estimate
propagation velocities with any single-spin-flip dynamic that satisfies
detailed balance. Time is measured in units of MC steps per spin (MCSS).

To prevent nucleation of droplets of the stable phase in front of the
moving interface, (5) we modify the Glauber dynamic by setting the trans-
ition rate for any spin which is parallel to all its neighbors (i.e., class 00s)
equal to zero.(7, 18, 19) This suppresses thermal fluctuations in both the bulk
phases, while the local interface structure is reasonably preserved. For
moderate fields the interface velocity with this modified Glauber dynamic
is only slightly less than that obtained with the full Glauber dynamic.(18, 19)

In the strong-field regime, where the size of a critical droplet of the
equilibrium phase is reduced to on the order of the lattice constant, the
kinetic Ising interface loses its integrity. A conservative analytic approxima-
tion for this crossover field (often called ``the mean-field spinodal''(20, 21)) is
(for isotropic interactions)(22) HMFSP(T )r_(T )�meq(T ), where _(T ) and
meq(T ) are the equilibrium surface tension in the x-direction and the equi-
librium magnetization, respectively. In the strong-field regime the SOS
approximation and the dynamic used here should be considered as a non-
equilibrium cluster growth model in its own right. For |H |<HMFSP(T )
they constitute a good approximation for the kinetic Ising model with the
full Glauber dynamic.(18, 19)

3. THE SOS APPROXIMATION

The separation of spins into classes forms the basis of several rejection-
free MC algorithms.(11�13, 23�25) In such algorithms the spin-class popula-
tions, n( jks), are continually monitored throughout the simulation. Given
this information and the transition probabilities of the particular dynamic
used, one can then calculate the time increments between MC updates.
Here we instead obtain analytic approximations for the mean spin-class
populations for a driven interface moving at a constant velocity, based on
the Burton�Cabrera�Frank SOS model of the equilibrium interface.(14)

These populations are then used together with the transition probabilities
to obtain the mean interface velocity.

The SOS approximation describes the interface as a single-valued
function y(x). For the square lattice considered here, the interface is a
series of integer-valued steps of height $(x) parallel to the y-axis, as shown
in Fig. 1. The heights of the individual steps are assumed to be statistically
independent and identically distributed. The probability density function
(pdf ) is given by the interaction energy corresponding to the |$(x)| broken
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Fig. 1. A short segment of a zero-field equilibrium SOS interface between a positively
magnetized phase for y<0 and a negative phase for y>0. The independent step heights, $(x),
are drawn from the pdf given by Eqs. (3) and (4) with T=0.6Tc and ,=0. Interface sites
representative of the different spin classes compatible with the SOS approximation are marked
with the notation jks explained in Section 2. Sites in the uniform bulk phases are 00& and
00+.

Jx -bonds between spins in the columns centered at (x&1�2) and (x+1�2)
as

px[$(x)]=Z&1
x X |$(x)|e#(,) $(x) (3)

where we have introduced the shorthand X=e&2;Jx. Here #(,) is a
Lagrange multiplier which maintains the mean step height at an x-inde-
pendent value, ($(x))=tan ,, where , is the overall angle between the
interface and the x-axis. The partition function is

Zx= :
+�

$=&�

X |$|e#(,) $=
1&X 2

1&2X cosh #(,)+X 2 (4)

Using Zx as a moment generating function for $(x), it is straightforward to
obtain the explicit expression

e#(,)=
(1+X 2) tan ,+R

2X(1+tan ,)
(5)
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where R=[(1&X 2)2 tan2 ,+4X 2]1�2. Combining Eqs. (4) and (5) one
obtains Zx explicitly as a function of ,:

Zx(,)=
(1&X 2)(1&tan2 ,)

1+X 2&R
(6)

For ,=0 this simplifies to Zx(0)=(1+X )�(1&X ). The SOS approxima-
tion ignores overhangs and bubbles. It is therefore rather remarkable that
the surface tension in this approximation, calculated as _SOS=
|cos ,| [2Jy&T ln Zx(,)+T#(,) tan ,], yields the exact result for ,=0(26)

and an excellent approximation for |,|�?�4.(27) For larger |,| it is more
reasonable to use an SOS approximation with steps parallel to the x-axis.

While Eq. (6) is equivalent to Eq. (72) of ref. 14, the implicit form
given by Eqs. (4) and (5) is more convenient for our purpose of obtaining
mean spin-class populations, (n( jks)) . The spin classes compatible with
this approximation are illustrated in Fig. 1. The mean populations are all
obtained from the joint pdf for $(x) and $(x+1). Since the individual step
heights are statistically independent, this is the product px[$(x)] }
px+1[$(x+1)]. The symmetry of px[$(x)] under the transformation
(x, ,, $) � (&x, &,, &$) ensures that (n( jk&))=(n( jk+)) for all j
and k. (On the right-hand sides of Eqs. (7)�(10) below, we have chosen
s=&1 with the interface oriented as shown in Fig. 1 for concreteness.)

The SOS picture implies that there is exactly one broken Jy bond per
unit length in the x-direction, so that (n(01s))+(n(11s))+(n(21s))=1.
The calculations of the individual populations are straightforward but
somewhat tedious, especially for nonzero ,. In Eqs. (7)�(9) below we there-
fore just give the starting point of the calculation for each class in terms of
px[$(x)] and the cumulative probabilities P[$(x)�n]=�n

$=&� px($)
and P[$(x)�n]=1&P[$(x)�(n&1)]. The final results are listed in
Table 2, both for general , and for ,=0.

(n(01s)) =P[$(x)�0] } P[$(x+1)�0] (7)

(n(11s)) =P[$(x)�&1] } P[$(x+1)�0]

+P[$(x)�0] } P[$(x+1)�1] (8)

(n(21s)) =P[$(x)�&1] } P[$(x+1)�1] (9)

Flipping a spin in either of these classes (marked V in Table 2) preserves
the SOS configuration.
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To obtain the mean populations for classes of spins that are connected
to the interface only through one (10s) or two (20s) broken Jx bonds is
more tedious. We found it most convenient first to calculate the joint pdf
for n=n(10s)+n(20s) and n(20s):

p[n, n(20s)]

={
P[$(x)�&1] } P[$(x+1)�1] for n=n(20s)=0

px[&(n+1)] } P[$(x+1)�1]+P[$(x)�&1] } px+1[n+1]

for n�1, n(20s)=0

px[&(n+1)] } px+1[n(20s)+1]+px[&(n(20s)+1)] } px+1[n+1]

for n>1, 1�n(20s)<n

px[&(n+1)] } px+1[n+1] for n(20s)=n�1 (10)

The resulting expressions for (n(10s)) and (n(20s)) are marked - in
Table 2. Flipping a spin in one of these classes results in the breaking of
two Jy -bonds, and thus in the creation of an overhang or a bubble. The
classes, 02s, 12s, and 22s, are not populated in the SOS approximation,
while 00s represents bulk sites which have zero transition rates with this
dynamic.

Each column of the interface advances by one lattice constant in the
y-direction whenever a spin flips from &1 to +1, regardless of its y-coor-
dinate. Conversely, the interface recedes by one lattice constant whenever
a spin flips from +1 to &1. The energy changes corresponding to a flip are
given in the third column in Table 1. Since the spin-class populations on
both sides of the interface are equal in this approximation, the contribution
from sites in the classes jk& and jk+ to the mean velocity in the y-direc-
tion is the difference between the transition probabilities for spin flips
leading to advance and recession:

(vy( jk))=W[;2E( jk&)]&W[;2E( jk+)] (11)

The results corresponding to the Glauber transition probabilities from
Eq. (2) are given in the last column in Table 2. (It is of course trivial to
generalize to (n( jk&)) {(n( jk+)) , but this will not be needed here.)
The mean propagation velocity perpendicular to the interface becomes

(v=(T, H, ,))=|cos ,| :
j, k

(n( jks))(vy( jk)) (12)
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Including the SOS-violating moves, jk # [10, 20], in principle allows the
propagation velocity to exceed unity as it becomes possible to flip several
spins along a high vertical step. However, such large velocities are only
observed for the strongest fields investigated here. Restricting the sum to
only jk # [01, 11, 21], on the other hand, yields an approximation which
excludes SOS-violating transitions and would limit the velocity to below
unity.

While the general result for the velocity is rather cumbersome if
written out in detail, the special case of ,=0 leads to a relatively compact
formula:

(v=(T, H, 0)) =
tanh(;H )
(1+X )2 {2X+

1+X 2

1+[sinh(2;Jx)�cosh(;H )]2

+
X 2

1&X 2 _ X 2

1+[sinh(2;(Jy&Jx))�cosh(;H )]2

+
2(1+2X )

1+[sinh(2;Jy)�cosh(;H )]2&= (13)

Here the first line corresponds to transitions that preserve the SOS struc-
ture of the interface, while the next two lines correspond to transitions that
create overhangs or bubbles. Comparison with simulation data indicate
that excluding the SOS-violating transitions leads to significant under-
estimation of the propagation velocity, even for quite moderate fields. This
effect is shown in Fig. 2 and discussed in more detail in Section 5.2.

Equation (13) with Jx=Jy was presented without detailed derivation
in ref. 19. In that work the average interface velocity in a kinetic Ising
model undergoing a field-driven phase transformation was estimated
directly from the time evolution of the magnetization after a sudden field
reversal. This estimate was found to be consistent with Eq. (13).

As T � 0, X � 0. In this limit, the dominant term in Eq. (12) is the one
proportional to (n(11s)) , which is simply the density of kinks on the
surface. Combining the appropriate entries in Table 2 with Eq. (5) and
ignoring X everywhere except where X 2 occurs in an additive combination
with tan2 ,, we get the angle-dependent interface velocity for very low T:

(v=(T � 0, H, ,)) =cos ,
- tan2 ,+4X 2&tan2 ,

1&tan2 ,
tanh(;H ) (14)

r{
1
2

|sin 2,|
|sin ,|+|cos ,|

tanh(;H )

- tan2 ,+4X 2 tanh(;H )

for tan ,>>X

for tan ,<<X
(15)
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Fig. 2. Comparison between MC simulations and the four different analytic approximations
introduced here. Shown is the normal interface velocity (v=) vs H for ,=0 at T=0.2Tc (a)
and T=0.6Tc (b). MC data (squares), linear-response excluding SOS-violating transitions
(dotted), linear-response including SOS-violating transitions (short-dashed), nonlinear-
response excluding SOS-violating transitions (long-dashed), and nonlinear-response including
SOS-violating transitions (NLI) (solid). In the low-temperature case shown in (a) the two
linear-response approximations are almost indistinguishable, and the dotted and short-dashed
curves coincide as the lowest of the three curves shown. Statistical errors in the MC data are
everywhere much smaller than the symbol size, both in this and all subsequent figures. The
vertical long-dashed lines mark the crossover field HMFSP(T ). In both (a) and (b), the NLI
approximation gives the best overall agreement with the data. It is the only one which will
be used in subsequent figures.
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The first line of Eq. (15) corresponds to the single-step model.(5, 6, 28, 29) In
ref. 6 the same result was obtained from a Green�Kubo-like linear-response
formula for the interface mobility. In the second line we retain only those
terms in tan2 ,, which dominate in the limit |tan ,|<<X, X � 0. It
corresponds to the polynuclear growth (PNG) model.(5, 30, 31) Equa-
tion (14) provides a correct interpolation between the PNG and single-step
results as |tan ,| increases from |tan ,|<<X to |tan ,|>>X. Only the fac-
tor tanh(;H ), which corresponds to the average velocity of a single step
along the surface, depends explicitly on the specific dynamic. At higher
temperatures than those for which Eq. (14) holds, the other spin classes
contribute to the interface velocity as well, and our approximation goes
beyond the single-step and PNG approximations.

4. NONLINEAR-RESPONSE SOS APPROXIMATION

The velocity estimates obtained in Section 3 were derived from the
equilibrium interface fluctuations at H=0 and thus constitute a linear-
response approximation. This is satisfactory for sufficiently weak fields. For
stronger fields, however, the structure of the moving interface is, in general,
modified, leading to additional field dependences in the velocity. As will be
shown in Section 5, this effect can be significant. In this section we there-
fore develop a mean-field theory for the step-height pdf for a moving, flat
SOS interface in a nonzero field.

The step-height pdf for a stationary SOS interface in a nonzero field
is(14)

px[$(x)]=Z&1
x X |$(x)|e[#(,)&2;Hx] $(x) (16)

The term containing H adds an x-dependence to the Lagrange multiplier
which determines ($(x)). The corresponding x-dependence in the partition
function is obtained by replacing #(,) by [#(,)&2;Hx] in Eq. (4), where
now tan ,=($(0)). The geometric structure described by Eq. (16) is a
macroscopically curved interface which bulges in the direction of the
metastable phase region. For the case of conserved order parameter or
nonconserved order parameter with an interface pinned at two points, the
stationary configuration is an equilibrium one. For nonconserved order
parameter without pinning, it corresponds to a critical droplet of the stable
phase. If the average curvature is changed from the x-dependent form given
by Eq. (16), the interface will move.

It is well known that the macroscopic, stationary distribution for flat,
moving interfaces in the KPZ universality class is Gaussian, (3, 8) corre-
sponding to a random walk with independent increments. Nevertheless, the
step heights in several discrete models in this class are known to be
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correlated at short distances.(32, 33) Here we develop a mean-field theory for
the single-step-height pdf of the moving interface by ignoring these short-
range correlations. Thus we assume that the step heights are statistically
independent and identically distributed, just as they are for H=0. In this
approximation, the single-step pdf of a moving interface parallel to the
x-axis is given by Eqs. (3) and (4) with #=0 and an H-dependent
generalization of the parameter X. We now construct a self-consistency
equation to determine this parameter, X(T, H ).

For simplicity we consider the step at x=0, and we take $(0)�0. The
equations obtained by considering other values of x and $(x)�0 are iden-
tical to the one we derive below. The total transition probability for the
height of a single step to change from $ to $\1 is W[$ � $\1]. Relating
the single-step transition probability to the single-step-height pdf by
detailed balance, we have:

X(T, H )#
p0[$(0)+1]

p0[$(0)]
=

W[$(0) � $(0)+1]
W[$(0)+1 � $(0)]

(17)

To find these transition probabilities, we refer to Fig. 3. In order for $(0)
to increase by one, either the spin at x=+1�2 can flip from &1 to +1,
decreasing $(+1) by one, or the spin at x=&1�2 can flip from +1 to &1,
decreasing $(&1) by one. Each of these possibilities is attempted with
probability 1�2. For each spin-flip direction, the resulting energy change
can have two different values, depending on the height of the correspond-
ing neighboring step. Analogous arguments hold for the reverse transitions,
$(0)+1 � $(0). The energy changes and the conditions on the neighboring
step heights are given next to the arrows denoting the directions of the
transitions in Fig. 3. Expressing the single-spin transition rate correspond-
ing to an energy change 2E as W[2E] and reading the energy changes
and conditions off from Fig. 3, we get:

W[$(0) � $(0)+1]= 1
2 [W[&2H] P[$(+1)�+1]

+W[&2H+4Jx] P[$(+1)�0]

+W[+2H] P[$(&1)� +1]

+W[+2H+4Jx] P[$(&1)�0]]

W[$(0)+1 � $(0)]= 1
2 [W[+2H] P[$(+1)�0]

+W[+2H&4Jx] P[$(+1)� &1]

+W[&2H] P[$(&1)�0]

+W[&2H&4Jx] P[$(&1)� &1]] (18)
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Fig. 3. Figure for calculating the transition rates W[$(0) � $(0)+1] and W[$(0)+1 �
$(0)], Eq. (18). Interface configurations are indicated by bold line segments. Like in Fig. 1,
the negatively magnetized phase is above the interface, and the positively magnetized phase
below it. At the center is shown a step $(0)�+1 (here shown as $(0)=+1 for concreteness).
A transition to ($(0)+1) can be effected by flipping either one of the spins in the dashed
boxes, each with probability 1�2. Flipping the initially negative spin (&) decreases $(+1) by
one. The resulting configurations are shown to the right. The energy change depends on the
initial value of $(+1), and the two possible energy changes and the corresponding conditions
are shown next to the right-pointing arrows. The thin horizontal lines represent the interface
configuration corresponding to the equality in the conditions. The energy changes and condi-
tions for the reverse transitions are shown next to the left-pointing arrows. Flipping the
initially positive spin (+) analogously decreases $(&1) by one. The energy changes and con-
ditions for the forward and reverse transitions resulting from flipping this spin, are indicated
in the left-hand half of the figure.

Consistent with the mean-field approximation we calculate the cumulative
probabilities with the same stationary single-step pdf, obtaining P[$�0]
=P[$�0]=1�[1+X(T, H )] and P[$�+1]=P[$�&1]=X(T, H )�
[1+X(T, H )]. The resulting self-consistency equation for X(T, H ) is

X(T, H)=

X(T, H)[W[&2H]+W[+2H]]
+W[&2H+4Jx]+W[+2H&4Jx]

W[&2H]+W[+2H]
+X(T, H )[W[&2H&4Jx]+W[+2H&4Jx]]

(19)

This is solved to yield

X(T, H )=e&2;Jx {e&2;HW[&2H&4Jx]+e2;HW[+2H&4Jx]
W[&2H&4Jx]+W[+2H&4Jx] =

1�2

(20)
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where we have also used the detailed-balance relation for the single-spin
transition probabilities, W[+2E]�W[&2E]=e&;2E, to eliminate
W[+2H+4Jx] and W[&2H+4Jx].

The approach described above is also applicable to curved interfaces,
and the resulting self-consistency equations are cubic in X(T, H ). However,
except for the stationary curved interface described by Eq. (16), the shapes
of such interfaces are not stationary and much more difficult to investigate
by simulations. We hope to return to these more complicated problems in
the future.

Equation (20) shows that X(T, H ) depends on the specific dynamic,
except for H=0, where it reduces to its equilibrium value, X(T, 0)=e&2;Jx,
for all dynamics that satisfy detailed balance.

Using the Glauber dynamic defined by Eq. (2), we get explicitly

XG(T, H )=e&2;Jx {e2;Jx cosh(2;H )+e&2;Jx

e&2;Jx cosh(2;H )+e2;Jx=
1�2

(21)

The Metropolis dynamic, WM[2E]=min[1, e&;2E], yields

XM(T, H )={
e&2;Jx[cosh(2;H )]1�2

{1+e&;(2H+4Jx)

e&;(2H&4Jx)+1=
1�2

for H�2Jx

for H�2Jx

(22)

Numerically, XG and XM are not very different, and they both approach
unity from below as H increases beyond 2Jx . They are shown together vs
H in Fig. 4.

The approximation used in ref. 19, X(T, H )=e&2;Jx cosh(;H ), can be
obtained by ``brutally decoupling'' the steps through fictitiously splitting
each spin in two and flipping only half of a spin to change the height of
a single step. For such a process Eq. (17) directly yields X(T, H )=
[W[&H+2Jx] + W[+H + 2Jx]]�[W[+H & 2Jx] + W[&H& 2Jx]],
from which the result in ref. 19 is obtained for H<2Jx using the
Metropolis dynamic. It is surprisingly close to the proper mean-field results
and is included in Fig. 4 for comparison.

In their study of a lattice-gas model for three-dimensional crystal
growth,34 Kotrla and Levi introduced a single-site dynamic which in Ising
language can be described (up to an overall rate factor e2;H) as the product
of Metropolis for field effects and Glauber for interaction effects:
WKL[&2H&4Jx]=WG[&4Jx] and WKL[+2H&4Jx]=e&2;HWG

[&4Jx]. Inserting these transition probabilities in Eq. (20), one finds that
they lead to an H-independent X. This is indeed the case for any dynamic
in which the field and interaction effects are statistically independent and
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Fig. 4. The parameter X(T, H ) for different dynamics, shown vs H at T=0.2Tc (a) and
T=0.6Tc (b). Solid curves: Glauber dynamic, XG(T, H), Eq. (21). Long-dashed curves:
Metropolis dynamic, XM(T, H), Eq. (22). Dotted curves: The approximation used in ref. 19.

obey detailed balance separately. It shows that the local interface structure
of driven interfaces can vary strongly as the dynamics are changed, even
within the class of nonconservative single-spin-flip dynamics. Dynamics
that factorize in this way are known as ``soft,'' in contrast to the ``hard''
dynamics which do not factorize, such as Metropolis and the Glauber rate
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used here. Soft and hard dynamics have been shown to lead to differences
in the steady states in a number of other nonequilibrium systems as well.(35)

All the results for the spin-class populations of the zero-field equi-
librium interface, which were derived in Section 3 and are listed in Table 2,
can now be applied to obtain a nonlinear-response approximation for the
propagation velocity of flat, driven interfaces. This simply requires replac-
ing the zero-field X=e&2;Jx used in the linear-response approximation by
the field-dependent X(T, H ), obtained from Eq. (20) with the transition
probabilities corresponding to the particular dynamic used. For most hard
dynamics, the net effect is to increase the mean step height, ( |$|), and thus
the interface velocity.

In the next section we show that this nonlinear-response approxima-
tion gives good agreement with MC simulations of driven, flat Ising inter-
faces for a wide range of fields and temperatures.

5. COMPARISON WITH MONTE CARLO SIMULATIONS

We have compared the analytical estimates of propagation velocities
and spin-class populations developed above with MC simulations of the
same model for Jx=Jy=J.

5.1. Simulation Details

To minimize the finite-size effects (see below), large simulation lattices
are needed to accommodate a sufficient length of the interface and provide
enough room for it to move unimpeded. To achieve long simulation runs
it is necessary to employ a co-moving simulation box to prevent the inter-
face from hitting the system boundary in the y-direction. We therefore used
an ``active-zone'' algorithm which relies on the fact that spins with no
broken bonds have zero transition probability. The algorithm uses a lattice
of size Lx in the x-direction, and it keeps a list of all spins which have at
least one broken bond and thus can flip in the next simulation step. Once
a spin loses its last broken bond, it is removed from the ``active list.'' A new
spin is added to the list as soon as it acquires a broken bond due to a
transition of one of its neighbors. The memory required for the list is
proportional to the length of the interface, Lx �|cos ,|. No lattice boun-
daries are needed in the y-direction, and consequently arbitrarily long
simulation runs can be performed. Except for these modifications, the algo-
rithm is a straightforward implementation of the discrete-time n-fold
way.(11)

393Velocity of Field-Driven Ising Interfaces



The mean tilt angle , was fixed by helical boundary conditions in the
x-direction. The production runs were performed with Lx=1000 and fixed
, between 0 and ?�4. Since kinetic Ising interfaces belong to the KPZ
universality class, (5, 8) the macroscopic interface width, ([ y(x, t)&
( y(x, t))]2) 1�2, is expected to saturate at a value proportional to L1�2

x after
a time t B L3�2

x . In order to ensure stationarity we ran the simulation for
10 000 MCSS before taking any measurements. Exploratory runs with both
larger and smaller Lx and ``warm-up'' times showed that the values used in
the production runs were sufficient to ensure a macroscopically stationary
interface. Class populations and interface velocities were averaged over
200 000 MCSS. The macroscopic stationarity of the interface should
abundantly ensure the stationarity of these quantities, which are properties
of the local interface structure.

5.2. Interface Velocities

The overall quality of the four different approximations developed
above (linear-response (Section 3) and nonlinear-response (Section 4), each
either excluding or including the SOS-violating transitions from classes 10s
and 20s) were explored in a wide range of H and T. In Fig. 2 the four
approximations are compared with MC data for interfaces parallel to the
x-axis at T=0.2Tc [Fig. 2(a)] and T=0.6Tc [Fig. 2(b)], where Tc is the
exact critical temperature. The crossover field HMFSP(T ) is marked by a
vertical dashed line in both (a) and (b). At the lowest temperature, the
interface has very few steps higher than one for H=0. As a result, it makes
practically no difference whether SOS-violating transitions are allowed or
not, and the curves representing the linear-response approximations
including and excluding SOS-violating transitions coincide in Fig. 2(a).
The nonzero field increases the average step height, and as a result the
SOS-violating transitions contribute significantly for stronger fields in the
nonlinear-response approximation. Overall, the nonlinear-response
approximation including SOS-violating transitions (``nonlinear inclusive''
or NLI) is everywhere better than the others and is particularly good for
H<HMFSP(T ). It is the only one which will be used in the rest of this
paper.

The temperature dependence between T=0 and Tc of the velocities of
interfaces parallel to the x-axis are shown in Fig. 5 for several values of H�J
between 0.2 and 2.0. For H�J�1.5, the discrepancy is nowhere greater than
a few percent��mostly much smaller. Even for H�J=1.9 and 2.0, the dis-
crepancy remains below about 150 everywhere.

The anisotropy of the interface velocities is shown in Fig. 6 for several
values of H�J between 0.1 and 2.0. The agreement between the NLI
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Fig. 5. Temperature dependence of the normal interface velocity, (v=) , for ,=0 at
H�J=2.0, 1.9, 1.5, 1.0, 0.5, and 0.2 from top to bottom. MC simulations (data points) and the
NLI analytic approximation (solid curves).

approximation and the simulations is very good, except for the strongest
fields. At T=0.2Tc [Fig. 6(a)], both the analytic and simulation results for
H�J�1.5 increase with increasing ,. As predicted by Eqs. (14) and (15),
under weak fields they cross over from the form of the PNG model for
tan ,<<X, to almost exact agreement with the single-step model for
tan ,>>X [Fig. 6(b)]. Growth shapes generated from these velocities
would be almost square, with their sides parallel to the x and y axes.(5) For
strong fields, however, the analytic approximation predicts velocities that
are slightly larger in the symmetry directions than for inclined interfaces, as
is the case for the Eden model.(36�38) This reverse anisotropy is not seen in
the MC data, which become almost perfectly isotropic and would lead to
circular growth shapes. With the Glauber dynamic it appears that stronger
fields and lower temperatures are needed to observe reverse anisotropy in
the MC data.(5) However, the discrepancies between the simulations and
the analytic approximation are modest in the regime explored here, even
near ,=?�4 for strong fields. For small , the agreement remains good for
all fields H�J�1.9. At T=0.6Tc [Fig. 6(c)], the simulated velocities are
practically isotropic for all fields. The analytic NLI approximation works
well, except for gradually increasing Eden-like reverse anisotropy for the
stronger fields.
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Fig. 6. The normal interface velocity (v=) , shown vs tan , for different fields. Simulation
data are shown as data points and the NLI approximation as solid curves. The fields included
are (from top to bottom) H�J=2.0 (empty squares, only in a and c), 1.9 (empty triangles,
only in a), 1.5 (filled diamonds), 1.0 (filled stars), 0.5 (filled triangles), and 0.1 (filled squares).
(a) At T=0.2Tc . (b) The four weakest fields at T=0.2Tc , divided by tanh(;H ). This shows
the crossover between PNG and single-step growth, Eqs. (14) and (15). The dotted curve is
the zero-temperature single-step result. (c) At T=0.6Tc .
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Fig. 6. (Continued )

5.3. Spin-Class Populations

While our main emphasis is on estimates of the interface velocity, the
most detailed information about the strengths and weaknesses of our
mean-field approximation for the interface structure is found in the
individual spin-class populations. Examples of the H-dependences for ,=0
at T=0.6Tc are shown in Fig. 7. Individual populations are shown in
Figs. 7(a) and (b), while spin classes with the same number of broken
bonds are combined in Fig. 7(c). The crossover field HMFSP(T ) is shown in
all three panels as a vertical dashed line. The agreement between the
theoretical estimates and the MC data is good out to about this field.

The discrepancies that develop with increasing H stem from two sour-
ces. One is the fact that the simulated interface, unlike the SOS description
used in the theoretical analysis, is not restricted to be free of overhangs and
bubbles. The other is the development of correlations between neighboring
step heights, which are not included in our single-step mean-field theory for
the local structure of the driven SOS interface.

The presence of overhangs and bubbles is clearly reflected in the
increase of (n(01s)) , relative to the monotonically decreasing analytic
approximation [Fig. 7(a)], and in the nonzero populations of the classes
that are not populated in the SOS approximation [Fig. 7(b)].

The increasing correlations between nearest-neighbor steps is expressed
by the gradual disappearance of the symmetry between the populations of
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Fig. 7. Comparison between MC simulations (filled symbols for s=+1 and empty symbols
for s=&1) and the NLI analytic approximation (solid curves) for the spin-class populations.
Results for T=0.6Tc and ,=0 are shown vs H. (a) Individual populations of the spin classes
compatible with the SOS picture. From top to bottom in the left part of the figure are 01s
(stars), 11s (diamonds), 10s (stars), 21s (triangles), and 20s (diamonds). (b) Individual pop-
ulations of the spin classes that would be unpopulated for a perfect SOS surface: 02s
(diamonds), 12s (triangles), and 22s (squares). These nonzero populations clearly indicate the
gradual breakdown of the SOS approximation with increasing H. (c) Class populations com-
bined according to number of broken bonds, j+k. From top to bottom: one (stars), two
(diamonds), three (triangles), and four (squares) broken bonds.
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Fig. 7. (Continued )

spins with s=+1 (stable) and s=&1 (unstable) as the field is increased.
The effect of these correlations is typically to broaden protrusions on the
leading side of the interface (``hilltops'') and sharpen protrusions on the
trailing side (``valley bottoms''), (32) or vice versa.(33) In terms of spin-class
populations, the former corresponds to (n(21+))<(n(21&)) and
(n(11+)) >(n(11&)). This is precisely what is seen in the simulations
[Fig. 7(a)]. More generally, we find that the populations of s=+1 are
enhanced for the classes with one and two broken bonds, while the popula-
tions of s=&1 are enhanced for the classes with three and four broken
bonds [Fig. 7(c)]. The latter include both sharp valley bottoms and
bubbles of the unstable phase, which form a wake behind the moving inter-
face. This shows that the breakdown of the SOS description and the evolu-
tion of lateral correlations are not independent at strong fields. The overall
picture is essentially the same at T=0.2Tc : both the populations in the non-
SOS classes, and the asymmetry become significant only near HMFSP(T ),
which at that temperature is close to H�J=2.

6. DISCUSSION

In this paper we introduced and explored analytic approximations for
the propagation velocity and spin-class populations of a field-driven
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interface in a two-dimensional kinetic Ising model. The model is applicable
to a number of systems undergoing order-disorder phase transformations,
including magnetic and ferroelectric systems and crystal growth under con-
ditions which are not limited by diffusion.

The approximations are based on a linear-response approach, in
which the equilibrium fluctuations of the interface (as embodied in average
spin-class populations) were estimated from the Burton�Cabrera�Frank
SOS model. The theory was extended by developing a mean-field
approximation for the field-dependent spin-class populations in a moving
flat interface, yielding a nonlinear-response approximation for the interface
velocity. This extension considerably improves the agreement with MC
simulations.

Our simulation results are consistent with those of ref. 5. However,
since that study used the Metropolis dynamic [see their Eq. (3)], the
velocities cannot be compared directly. For asymptotically low T, the
velocity is completely determined by the kink density, (n(11s)). This is the
regime in which the single-step and PNG models are expected to hold.
Indeed, they emerge in the proper limits from our analytic approximation,
as shown in Eqs. (14) and (15). For larger H�2J and T�Tc , other spin
classes also contribute significantly to the interface velocity. In this
parameter range we obtain good agreement between theory and simulation
almost everywhere. This agreement includes the disappearance of the
velocity anisotropy with increasing T and H.

Both the SOS approximation for the interface structure, and the
assumption of uncorrelated step heights employed in the nonlinear-
response approximation break down for stronger fields. While the NLI
approximation for the interface velocities remains very satisfactory overall,
the breakdown of these assumptions can be detected more clearly in the
spin-class populations. The only detailed theories of the local structure of
driven interfaces that we are aware of, are for much simpler SOS models
than the unrestricted one studied here, such as the body-centered SOS
(BCSOS) and restricted SOS (RSOS) models.(32) It would therefore be
interesting to compare our mean-field approximation for the interface
structure with MC simulations of the driven SOS interface, so that the
complications arising from overhangs and bubbles can be avoided.(39)

In summary, the approximations presented here give results for the
spin-class populations and propagation velocities of Ising interfaces driven
by nonzero fields, which are exact in the asymptotic limits of low T and H,
and which agree well with MC simulations almost everywhere, even for H
near 2J and T near Tc . It is not clear whether the wide regime of
applicability is an accident limited to two dimensions, and it would there-
fore be interesting to extend the approach to three dimensions as well.
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